x2+2x+2 | ||
C1'(x)ex+C2'(x)(x+1)ex= | ||
x3 |
x2+2x+2 | ||
−C2'(x)xex+C2'(x)(x+1)ex= | ||
x3 |
x2+2x+2 | ||
C2'(x)(x+1−x)ex= | ||
x3 |
x2+2x+2 | ||
C2'(x)ex= | ||
x3 |
x2+2x+2 | ||
C2'(x)= | e−x | |
x3 |
x2+2x+2 | ||
C1'(x)=− | e−x | |
x2 |
x2+2x+2 | e−x | 2 | 2 | |||||
∫ | e−xdx=∫ | dx+∫ | e−xdx+∫ | e−xdx | ||||
x3 | x | x2 | x3 |
2 | e−x | 1 | ||||
∫ | e−xdx=− | −∫ | (e−x)dx | |||
x3 | x2 | x2 |
2 | e−x | 1 | ||||
∫ | e−xdx=− | −∫ | (e−x)dx | |||
x3 | x2 | x2 |
2 | 2 | e−x | 1 | |||||
∫ | e−xdx+∫ | e−xdx=− | +∫ | (e−x)dx | ||||
x3 | x2 | x2 | x2 |
2 | 2 | e−x | e−x | e−x | ||||||
∫ | e−xdx+∫ | e−xdx=− | +(− | −∫ | dx) | |||||
x3 | x2 | x2 | x | x |
2 | 2 | e−x | e−x | e−x | ||||||
∫ | e−xdx+∫ | e−xdx=− | − | −∫ | dx | |||||
x3 | x2 | x2 | x | x |
2 | 2 | e−x | e−x | e−x | ||||||
∫ | e−xdx+∫ | e−xdx+∫ | dx=− | − | +C | |||||
x3 | x2 | x | x2 | x |
(x+1) | ||
C2(x)=− | e−x | |
x2 |
x2+2x+2 | ||
C1'(x)=− | e−x | |
x2 |
2 | 2 | |||
∫(−1− | − | )e−xdx | ||
x | x2 |
2 | 2 | |||
∫−e−xdx−∫ | e−xdx−∫ | e−xdx | ||
x | x2 |
2 | 2 | 2 | ||||
−∫ | e−xdx= | e−x−∫ | (−e−x)dx | |||
x2 | x | x |
2 | 2 | e−x | ||||
−∫ | e−xdx= | e−x+2∫ | dx | |||
x2 | x | x |
2 | 2 | 2 | ||||
−∫ | e−xdx−∫ | e−xdx= | e−x | |||
x2 | x | x |
2 | 2 | 2 | ||||
∫(−1− | − | )e−xdx=e−x+ | e−x | |||
x | x2 | x |
2 | 2 | x+2 | ||||
∫(−1− | − | )e−xdx= | e−x | |||
x | x2 | x |
x+2 | ||
C(1)(x)= | e−x | |
x |
x+2 | (x+1) | |||
ys=( | e−x)ex+(− | e−x)xex | ||
x | x2 |
x+2 | x+1 | |||
ys= | − | |||
x | x |
1 | ||
ys= | ||
x |
1 | ||
ys= | ||
x |
1 | ||
y=C1ex+C2xex+ | ||
x |