1 | x−2 | |||
lim ( | − | ) | ||
x2 | x3−x |
4 | 1 | |||
lim ( | − | ) | ||
1−x | (x−1)2 |
1 | x−2 | 1 | x−2 | ||||
− | = | − | = | ||||
x2 | x3−x | x2 | x(x2−1) |
1(x2−1) | x(x−2) | |||
= | − | = | ||
x2(x2−1) | x2(x2−1) |
x2−1−x2+2x | 2x−1 | |||
= | = | |||
x2(x2−1) | x2(x2−1) |
2x−1 | 2*0−1 | −1 | ||||
limx→0 | = limx→0 | = | czyli jest to | |||
x2(x2−1) | 02(02−1) | 0 |
a | ||
wyrażenie typu | ||
0 |
a | ||
pojawienie się wyrażenia typu | sugeruje że możliwe są trzy opcje: granica może wynieść | |
0 |
2x−1 | 2*0,01−1 | −0,98 | ||||
limx→0+ | = | = | = | |||
x2(x2−1) | 0,012*(0,012−1) | 0,0001*(−0,9999) |
−0,98 | ||
−0,0001 |
2x−1 | 2*(−0,01)−1 | |||
limx→0− | = | = | ||
x2(x2−1) | (−0,01)2*((−0,01)2−1) |
−1,02 | −1,02 | |||
= | czyli też +∞ | |||
0,0001*(−0,9999) | −0,0001 |
4 | 1 | −4 | 1 | −4(x−1) | 1 | ||||||
− | = | − | = | − | = | ||||||
1−x | (x−1)2 | x−1 | (x−1)2 | (x−1)2 | (x−1)2 |
−4x+4−1 | ||
= | ||
(x−1)2 |
−4x+3 | ||
= | ||
(x−1)2 |
−4x+3 | −4*1+3 | −1 | ||||
limx→1 | = | = | ||||
(x−1)2 | (1−1)2 | 0 |
−4x+3 | −4*1,01+3 | −4,04+3 | ||||
limx→1+ | = | = | = | |||
(x−1)2 | (1,01−1)2 | (0,01)2 |
−1,04 | ||
= −∞ | ||
0,0001 |
−4x+3 | −4*0,99+3 | −3,97+3 | ||||
limx→1− | = | = | = | |||
(x−1)2 | (0,99−1)2 | (−0,01)2 |
−0,97 | ||
= −∞ | ||
0,0001 |
−4x+3 | ||
limx→1 | = −∞ | |
(x−1)2 |