| 1 | ||
∫x2√x2 + 1dx = ∫sh2(t)ch2(t)dt = | ∫sh2(2t)dt = | |
| 4 |
| 1 | ch(4t) − 1 | 1 | 1 | |||||
= | ∫ | dt = | [−t + | sh(4t)] + C = | ||||
| 4 | 2 | 8 | 4 |
| 1 | ||
= | [t + sh(t)ch(t)(2sh2(t) + 1] + C = | |
| 8 |
| 1 | ||
= | [arshinh(x) + x√1 + x2(2x2 + 1)] + C | |
| 8 |
To już 4 dzisiaj ...
| t2−1 | ||
x= | ||
| 2t |
| t2−1 | ||
t − x = t − | ||
| 2t |
| t2+1 | ||
t − x = | ||
| 2t |
| 2t*2t−2(t2−1) | ||
dx = | dt | |
| 4t2 |
| t2+1 | ||
dx = | dt | |
| 2t2 |
| (t2−1)2 | t2+1 | t2+1 | ||
∫ | dt | |||
| 4t2 | 2t | 2t2 |
| 1 | (t4−1)2 | ||
∫ | dt | ||
| 16 | t5 |
| 1 | t8−2t4+1 | ||
∫ | dt | ||
| 16 | t5 |
| 1 | 1 | 1 | 1 | ||||
(∫t3dt+∫ | dt)− | ∫ | dt | ||||
| 16 | t5 | 8 | t |
| 1 | t4 | 1 | 1 | ||||
( | − | )− | ln|t|+C | ||||
| 16 | 4 | 4t4 | 8 |
| 1 | t8−1 | 1 | ||
− | ln|t|+C | |||
| 64 | t4 | 8 |
| (t2+1) | t2−1 | (t2−1)2+2t2 | 1 | ||
− | ln|t|+C | ||||
| 2t | 2t | 16t2 | 8 |
| (t2+1) | t2−1 | 1 | (t2−1)2 | 1 | 1 | ||||
( | + | )− | ln|t|+C | ||||||
| 2t | 2t | 4 | (2t)2 | 8 | 8 |
| 1 | 1 | 1 | |||
(x2+ | )x√1+x2− | ln|x+√1+x2|+C | |||
| 4 | 2 | 8 |
| 1 | 1 | ||
(2x3+x)√1+x2− | ln|x+√1+x2|+C | ||
| 8 | 8 |