1 | ||
∫x2√x2 + 1dx = ∫sh2(t)ch2(t)dt = | ∫sh2(2t)dt = | |
4 |
1 | ch(4t) − 1 | 1 | 1 | |||||
= | ∫ | dt = | [−t + | sh(4t)] + C = | ||||
4 | 2 | 8 | 4 |
1 | ||
= | [t + sh(t)ch(t)(2sh2(t) + 1] + C = | |
8 |
1 | ||
= | [arshinh(x) + x√1 + x2(2x2 + 1)] + C | |
8 |
t2−1 | ||
x= | ||
2t |
t2−1 | ||
t − x = t − | ||
2t |
t2+1 | ||
t − x = | ||
2t |
2t*2t−2(t2−1) | ||
dx = | dt | |
4t2 |
t2+1 | ||
dx = | dt | |
2t2 |
(t2−1)2 | t2+1 | t2+1 | ||
∫ | dt | |||
4t2 | 2t | 2t2 |
1 | (t4−1)2 | ||
∫ | dt | ||
16 | t5 |
1 | t8−2t4+1 | ||
∫ | dt | ||
16 | t5 |
1 | 1 | 1 | 1 | ||||
(∫t3dt+∫ | dt)− | ∫ | dt | ||||
16 | t5 | 8 | t |
1 | t4 | 1 | 1 | ||||
( | − | )− | ln|t|+C | ||||
16 | 4 | 4t4 | 8 |
1 | t8−1 | 1 | ||
− | ln|t|+C | |||
64 | t4 | 8 |
(t2+1) | t2−1 | (t2−1)2+2t2 | 1 | ||
− | ln|t|+C | ||||
2t | 2t | 16t2 | 8 |
(t2+1) | t2−1 | 1 | (t2−1)2 | 1 | 1 | ||||
( | + | )− | ln|t|+C | ||||||
2t | 2t | 4 | (2t)2 | 8 | 8 |
1 | 1 | 1 | |||
(x2+ | )x√1+x2− | ln|x+√1+x2|+C | |||
4 | 2 | 8 |
1 | 1 | ||
(2x3+x)√1+x2− | ln|x+√1+x2|+C | ||
8 | 8 |