1−√x+1 | ||
∫ | dx | |
1+3√x+1 |
1 − √x+1 | 1 − t3 | |||
∫ | dx = ∫ | * 6t5 dt = ... | ||
1 + 3√x+1 | 1 + t2 |
(1−t3)*t5 | t8−t5 | ||
=− | |||
(t2+1 | t2+1 |
(t8−t5) | ||
1) −6∫ | dt= ... | |
(t2+1) |
(t8−t5) | −t+1 | ||
= (t6−t4−t3+t2+t−1)+ | |||
(t2+1) | t2+1 |
(t8−t5) | −t+1 | |||
2) −6∫ | dt=−6∫( t6−t4−t3+t2+t−1+ | ) dt= | ||
(t2+1 | t2+1 |
−t+1 | ||
=−6[∫( t6−t4−t3+t2+t−1) dt+∫ | ) dt= | |
t2+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |