| 5 | ||
Dla jakich wartości parametru m>0 równanie x3+mx2− | m2x+m=0 ma trzy różne pierwiastki | |
| 12 |
| 5 | ||
x3+mx2− | m2x+m=0 | |
| 12 |
| 5 | ||
c=− | m2 | |
| 12 |
| b | ||
Stosujac podstawienie x=y− | doprowadzam to rownanie do postaci | |
| 3a |
| −b2+3ac | ||
p= | ||
| 3a2 |
| 2b3−9abc+27a2d | ||
q= | ||
| 27a3 |
| q2 | p3 | |||
Δ= | + | musi byc mniejszy od zera . | ||
| 4 | 27 |
| 5 | ||
f(x)=x3+mx2− | m2x+m | |
| 12 |
| 5 | ||
f'(x)=3x2+2mx− | m2 | |
| 12 |
| 5m | m | |||
f'(x)=3(x+ | )(x− | ) | ||
| 6 | 6 |
| −5m | m | |||
f( | )>0 ∧ f( | )<0 | ||
| 6 | 6 |