Wyznacz wzór funkcji kwadratowej f
Ola: Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej, wiedząc, że dla argumentu −5
przyjmuje wartość największą, równą −8, a do jej wykresu należy punkt A(−3,−9).
1 mar 09:24
szarik: Mamy podany wierzchołek W(−5,−8) więc p=−5 q=−8
y=a(x−p)2+q
y=a(x+5)2−8 i A(−3,−9)
−9=a(−3+5)2−8
−9=4a−8
−1=4a
a=−1/4
y=−1/4(x+5)−8
1 mar 10:00
piotr: "przyjmuje wartość największą" ⇒ a<0
y = a(x−p)
2 + q
p=−5
q=−8
"do jej wykresu należy punkt A(−3,−9)"
⇒
−9 = a(−3−(−5))
2 + (−8)
⇒
a=−1/4
⇒
1 mar 10:01