| √2 | ||
sin(x) − cos(x) = | ||
| 2 |
| 1 | ||
sin2(x) − 2sin(x)cos(x) + cos2(x) = | ||
| 2 |
| 1 | ||
1 − sin(2x) = | ||
| 2 |
| 1 | ||
sin(2x) = | ||
| 2 |
| π | 5π | |||
x = | + kπ ∨ x = | + kπ | ||
| 12 | 12 |
| 5π | 13π | |||
x = | + 2kπ ∨ x = | + 2kπ | ||
| 12 | 12 |
zapraszam do klubu fizyków
| π | π | |||
cosx−sinx=√2cos( | +x)=√2sin( | −x) | ||
| 4 | 4 |
| π | ||
sinx−cosx=−√2sin( | −x) | |
| 4 |
| π | √2 | |||
−√2(sin( | −x)= | |||
| 4 | 2 |
| π | 1 | |||
sin( | −x)= − | |||
| 4 | 2 |
| π | π | ||
−x=− | +2kπ to x= ............................... | ||
| 4 | 6 |
| π | π | ||
−x=π−(− | )+2kπ to x=.............................. | ||
| 4 | 6 |
| 5π | ||
daras no tutaj jak masz rozwiązanie | + 2kπ, to można przyjąć, że π ≈ 3, i napisać | |
| 12 |
| 5π | 15 | ||
+ 2kπ = | + 6k = 1.25 + 6k ≈ 1 + 6k | ||
| 12 | 12 |
to ja nie wiem o co kaman