√2 | ||
sin(x) − cos(x) = | ||
2 |
1 | ||
sin2(x) − 2sin(x)cos(x) + cos2(x) = | ||
2 |
1 | ||
1 − sin(2x) = | ||
2 |
1 | ||
sin(2x) = | ||
2 |
π | 5π | |||
x = | + kπ ∨ x = | + kπ | ||
12 | 12 |
5π | 13π | |||
x = | + 2kπ ∨ x = | + 2kπ | ||
12 | 12 |
π | π | |||
cosx−sinx=√2cos( | +x)=√2sin( | −x) | ||
4 | 4 |
π | ||
sinx−cosx=−√2sin( | −x) | |
4 |
π | √2 | |||
−√2(sin( | −x)= | |||
4 | 2 |
π | 1 | |||
sin( | −x)= − | |||
4 | 2 |
π | π | ||
−x=− | +2kπ to x= ............................... | ||
4 | 6 |
π | π | ||
−x=π−(− | )+2kπ to x=.............................. | ||
4 | 6 |
5π | ||
daras no tutaj jak masz rozwiązanie | + 2kπ, to można przyjąć, że π ≈ 3, i napisać | |
12 |
5π | 15 | ||
+ 2kπ = | + 6k = 1.25 + 6k ≈ 1 + 6k | ||
12 | 12 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |