11x+22 | ||
∫ | dx | |
2x2−16x−18 |
11x+22 | 11x+22 | A | B | ||||
= | = | + | |*(x+1)(x−9) | ||||
2x2−16x−18 | x−9 | x+1 | x−9 |
⎧ | A+B=11 | |
⎩ | −9A +B=22 |
11x+22 | −1.1 | 12.1 | ||||
∫ | dx =∫ | dx + ∫ | dx | |||
2x2−16x−18 | x+1 | x−9 |
11 | 11 | 1 | 1 | |||||
1) ∫U{121}{20*(x−9)− | dx= | *[11∫ | dx−∫ | ]dx= | ||||
20(x+1) | 20 | x−9 | x+1 |
11 | ||
= | *(11ln|x−9|−ln|x+1|)+C | |
20 |
11x+22 | A | B | |||
= | + | ||||
2x2−16x−18 | 2(x+1) | x−9) |
121 | ||
B= | ||
20 |
11 | ||
A=− | ||
10 |
11x+22 | −11 | 121 | |||
= | + | ||||
2x2−16x−18 | 2*10(x+1) | 20*(x−90) |
121 | ||
Dziękuję wychodzi tylko w ostatniej linijce chyba miało być | ||
20*(x−9) |