1 | ||
∫ | ||
√4x2−4x+5 |
1 | ||
...=∫ | dx | |
√(2x−1)2+4 |
1 | 1 | 1 | ||||
...= | ∫ | dt= | ln|t+√t2+4|+C | |||
2 | √t2+4 | 2 |
dx | 1 | dx | ||||
=∫ | = | ∫ | ||||
√(2x+1)2+4 | 2 | √(x+1/2)2+1 |
1 | ||
= | ln(x+1/2 + √(x+1/2)2+1) | |
2 |
t2−5 | ||
x= | ||
4t−4 |
2t(4t−4)−4(t2−5) | ||
dx= | dt | |
(4t−4)2 |
4t2−8t+20 | ||
dx= | dt | |
(4t−4)2 |
t2−2t+5 | ||
dx= | dt | |
(2t−2)2 |
t2−5 | ||
t−2x=t− | ||
2t−2 |
t2−2t+5 | ||
t−2x= | ||
2t−2 |
2t−2 | t2−2t+5 | ||
∫ | dt | ||
t2−2t+5 | (2t−2)2 |
1 | ||
=∫ | dt | |
2t−2 |
1 | 1 | |||
= | ∫ | dt | ||
2 | t−1 |
1 | ||
= | ln|2x−1+2√4x2−4x+5|+C | |
2 |