2x2 | ||
Dane jest wyrazenie | ||
x−√8−2x−x2 |
x+4 | ||
Uwzgledniajac zwiazek √ | =t wyrazic wartosc tego wyrazenia tylko w zaleznosci od t | |
2−x |
−1−√17 | ||
x3= | ||
2 |
−1+√17 | ||
x4= | ||
2 |
x+4 | ||
t2 = | ||
2−x |
2t2−4 | ||
x = | ||
1+t2 |
−1−√17 | ||
x1 = | < 0 nie spełnia założeń | |
2 |
−1+√17 | ||
x2 = | > 0 | |
2 |
−1+√17 | ||
Wyrażenie ma sens liczbowy dla x ∊ (−4, 2) \ { | } | |
2 |
2t2−4 | 4t4−16t2+16 | |||
x= | ⇒x2= | zostawie sobie mianownik w takiej postaci | ||
t2+1 | (t2+1)2 |
8(t2+1) | 2t2−4 | 8t2+8−2t2+4 | 6t2+12 | |||||
8−x= | − | = | = | |||||
t2+1 | t2+1 | t2+1 | t2+1 |
(6t2+12)(t2+1) | 4t4−16t2+16 | |||
8−x−x2= | −( | = | ||
(t2+1)2 | (t2+1)2 |
6t4+18t2+12−4t4+16t2−16 | ||
(t2+1)2 |
2t4+34t2−4 | 2(t4+17t2−2) | |||
= | = | |||
(t2+1)2 | t2+1)2 |
√2*√t4+17t2−2 | ||
√8−x−x2= | ||
t2+1 |
2t2−4 | √2*√t4+17t2−2 | 2t2−4−√2*√t4+17t2−2 | |||
−( | )= | ||||
t2+1 | t2+1 | t2+1 |
2x2 | ||
Obliczam teraz | ||
x−√8−x−x2 |
8t4−32t2+32 | ||
2x2= | ||
t2+1)2 |
8(t4−4t2+4) | t2+1 | ||
* | |||
(t2+1)2 | 2t2−4−√2*√t4+17t2−2 |
8(t4−4t2+4) | ||
= | ||
2t2−4−√2*√t4+17t2−2*(t2+1) |
4(t2−2)2 | ||
Natomiast w odpowiedzi mam tak | ||
(t2+1)(t2−3t+2) |
2t2−4 | 2t2−4 | |||
8−2x−x2 = 8 − 2* | − ( | )2 = | ||
t2+1 | t2+1 |
8(t2+1)2−2(2t2−4)(t2+1)−(2t2−4)2 | |
= | |
(t2+1)2 |
8(t4+2t2+1)−2(2t4−2t2−4)−(2t2−4)2 | |
= | |
(t2+1)2 |
8t4+16t2+8−4t4+4t2+8−4t4+16t2−16 | |
= | |
(t2+1)2 |
36t2 | 6t | ||
= ( | )2 | ||
(t2+1)2 | t2+1 |
2t2−4 | 6t | 2t2−6t−4 | |||
− | = | ||||
t2+1 | t2+1 | t2+1 |
2x2 |
| |||||||||||
= | = | |||||||||||
x−√8−2x−x2 |
|
(2t2−4)2 | t2+1 | |||
= 2* | ) * | = | ||
(t2+1)2 | 2(t2−3t−2) |
(2t2−4)2 | 4(t2−2) | ||
= | |||
(t2+1)(t2−3t−2) | (t2+1)(t2−3t−2) |