| 2x2 | ||
Dane jest wyrazenie | ||
| x−√8−2x−x2 |
| x+4 | ||
Uwzgledniajac zwiazek √ | =t wyrazic wartosc tego wyrazenia tylko w zaleznosci od t | |
| 2−x |
| −1−√17 | ||
x3= | ||
| 2 |
| −1+√17 | ||
x4= | ||
| 2 |
| x+4 | ||
t2 = | ||
| 2−x |
| 2t2−4 | ||
x = | ||
| 1+t2 |
| −1−√17 | ||
x1 = | < 0 nie spełnia założeń | |
| 2 |
| −1+√17 | ||
x2 = | > 0 | |
| 2 |
| −1+√17 | ||
Wyrażenie ma sens liczbowy dla x ∊ (−4, 2) \ { | } | |
| 2 |
| 2t2−4 | 4t4−16t2+16 | |||
x= | ⇒x2= | zostawie sobie mianownik w takiej postaci | ||
| t2+1 | (t2+1)2 |
| 8(t2+1) | 2t2−4 | 8t2+8−2t2+4 | 6t2+12 | |||||
8−x= | − | = | = | |||||
| t2+1 | t2+1 | t2+1 | t2+1 |
| (6t2+12)(t2+1) | 4t4−16t2+16 | |||
8−x−x2= | −( | = | ||
| (t2+1)2 | (t2+1)2 |
| 6t4+18t2+12−4t4+16t2−16 | ||
| (t2+1)2 |
| 2t4+34t2−4 | 2(t4+17t2−2) | |||
= | = | |||
| (t2+1)2 | t2+1)2 |
| √2*√t4+17t2−2 | ||
√8−x−x2= | ||
| t2+1 |
| 2t2−4 | √2*√t4+17t2−2 | 2t2−4−√2*√t4+17t2−2 | |||
−( | )= | ||||
| t2+1 | t2+1 | t2+1 |
| 2x2 | ||
Obliczam teraz | ||
| x−√8−x−x2 |
| 8t4−32t2+32 | ||
2x2= | ||
| t2+1)2 |
| 8(t4−4t2+4) | t2+1 | ||
* | |||
| (t2+1)2 | 2t2−4−√2*√t4+17t2−2 |
| 8(t4−4t2+4) | ||
= | ||
| 2t2−4−√2*√t4+17t2−2*(t2+1) |
| 4(t2−2)2 | ||
Natomiast w odpowiedzi mam tak | ||
| (t2+1)(t2−3t+2) |
| 2t2−4 | 2t2−4 | |||
8−2x−x2 = 8 − 2* | − ( | )2 = | ||
| t2+1 | t2+1 |
| 8(t2+1)2−2(2t2−4)(t2+1)−(2t2−4)2 | |
= | |
| (t2+1)2 |
| 8(t4+2t2+1)−2(2t4−2t2−4)−(2t2−4)2 | |
= | |
| (t2+1)2 |
| 8t4+16t2+8−4t4+4t2+8−4t4+16t2−16 | |
= | |
| (t2+1)2 |
| 36t2 | 6t | ||
= ( | )2 | ||
| (t2+1)2 | t2+1 |
| 2t2−4 | 6t | 2t2−6t−4 | |||
− | = | ||||
| t2+1 | t2+1 | t2+1 |
| 2x2 |
| |||||||||||
= | = | |||||||||||
| x−√8−2x−x2 |
|
| (2t2−4)2 | t2+1 | |||
= 2* | ) * | = | ||
| (t2+1)2 | 2(t2−3t−2) |
| (2t2−4)2 | 4(t2−2) | ||
= | |||
| (t2+1)(t2−3t−2) | (t2+1)(t2−3t−2) |
Liczyłeś złe wyrażenie
8−2x =...