| n−1 | ||
( | ) 2n+1 <− to jest w potędze całego ułamka | |
| 2n+1 |
| 1 | 2n + 1 | ||
*cos(n!) + | |||
| n2 | 3 * 2n + 2 |
czekam na odpowiedź
| t−12−1 | ||
lim = limt→+∞ ( | )t = | |
| t |
| t−1−2 | ||
limt→+∞ ( | )t = | |
| 2t |
| t−3 | ||
limt→+∞ (12)t * limt→+∞ ( | )t = | |
| t |
| 1 | cos(n!) | 1 | ||||
− | ≤ | ≤ | ||||
| n2 | n2 | n2 |
| 1 | ||
− | → 0 | |
| n2 |
| 1 | |
→ 0 | |
| n2 |
| cos(n!) | |
→ 0 | |
| n2 |
| 2n+1 | |
= | |
| 3*2n+2 |
| ||||||||||
= | ||||||||||
|
| 1+0 | 1 | ||||||||||||
→ | = | |||||||||||||
| 3+0 | 3 |
| (√n3+n−√n2−1)(√n3+n+√n2+1) | |
= | |
| √n3+n+√n2−1 |
| n3+n−n2+1 | |
= | |
| √n3(1+1n2)+√n3(1n−1n3) |
| n3(1−1n+1n2+1n3) | |
= | |
| n3/2(√(1+1n2)+√1n−1n3) |
| 1−1n+1n2+1n3 | ||
n3/2* | → | |
| √1+1n2)+√1n−1n3 |
| 1−0+0+0 | 1 | |||
+∞* | = +∞* | = +∞*1=+∞ | ||
| √1+0+√0+0 | 1+0 |
ale dzięki ze wytłumaczenie