| 1−x | dx | |||
∫√ | * | Pomoże ktoś? | ||
| 1+x | x |
| 1−x | ||
t2= | ||
| 1+x |
| −1−x+2 | ||
t2= | ||
| 1+x |
| 2 | ||
t2=−1+ | ||
| 1+x |
| 2 | ||
t2+1= | ||
| 1+x |
| 1 | 1+x | ||
= | |||
| t2+1 | 2 |
| 2 | |
=1+x | |
| t2+1 |
| −4t | ||
dx= | dt | |
| (t2+1)2 |
| 2 | |
−1=x | |
| t2+1 |
| 1−t2 | |
=x | |
| 1+t2 |
| (1+t2)t | −4t | ||
∫ | dt | ||
| (1−t2) | (t2+1)2 |
| t2 | ||
−4∫ | dt | |
| (t2+1)(t2−1) |
| (t2+1)+(t2−1) | ||
−2∫ | dt | |
| (t2+1)(t2−1) |
| 1 | 1 | |||
−2∫ | dt−2∫ | dt | ||
| t2−1 | t2+1 |
| (t−1)−(t+1) | 1 | |||
∫ | dt−2∫ | dt | ||
| (t−1)(t+1) | t2+1 |
| 1 | 1 | 1 | ||||
∫ | dt−∫ | dt−2∫ | dt | |||
| t+1 | t−1 | t2+1 |
| t+1 | ||
ln| | |−2arctg(t)+C | |
| t−1 |
| 1−x | dx | |||
∫√ | * | |||
| 1+x | x |
| 1 | dx | dx | ||||
=∫ | * | − ∫ | ||||
| √1−x2 | x | √1−x2 |
| dy | ||
Pierwsza całka = − ∫ | = − ch−1(y)=− ln(y+√y2−1) = − ln(1/x + √1/x2−1) | |
| √y2−1 |