1−x | dx | |||
∫√ | * | Pomoże ktoś? | ||
1+x | x |
1−x | ||
t2= | ||
1+x |
−1−x+2 | ||
t2= | ||
1+x |
2 | ||
t2=−1+ | ||
1+x |
2 | ||
t2+1= | ||
1+x |
1 | 1+x | ||
= | |||
t2+1 | 2 |
2 | |
=1+x | |
t2+1 |
−4t | ||
dx= | dt | |
(t2+1)2 |
2 | |
−1=x | |
t2+1 |
1−t2 | |
=x | |
1+t2 |
(1+t2)t | −4t | ||
∫ | dt | ||
(1−t2) | (t2+1)2 |
t2 | ||
−4∫ | dt | |
(t2+1)(t2−1) |
(t2+1)+(t2−1) | ||
−2∫ | dt | |
(t2+1)(t2−1) |
1 | 1 | |||
−2∫ | dt−2∫ | dt | ||
t2−1 | t2+1 |
(t−1)−(t+1) | 1 | |||
∫ | dt−2∫ | dt | ||
(t−1)(t+1) | t2+1 |
1 | 1 | 1 | ||||
∫ | dt−∫ | dt−2∫ | dt | |||
t+1 | t−1 | t2+1 |
t+1 | ||
ln| | |−2arctg(t)+C | |
t−1 |
1−x | dx | |||
∫√ | * | |||
1+x | x |
1 | dx | dx | ||||
=∫ | * | − ∫ | ||||
√1−x2 | x | √1−x2 |
dy | ||
Pierwsza całka = − ∫ | = − ch−1(y)=− ln(y+√y2−1) = − ln(1/x + √1/x2−1) | |
√y2−1 |