| 2n−1 | ||
∑ (od n=2 do inf) | ||
| 3n |
| 1 | ||
∑ (od n=0 do inf) xn = | ||
| 1−x |
| 2x2 | ||
∑ (od n=2 do inf) (2n−1)(x2n) = | ||
| (1−x2)2 |
| 2 | ||
Podstawiłem do tego P{1/3} jednak wyszło mi U{3/2} zamiast szukanego | ||
| 3 |
| 2x2 | ||
∑ (od n=2 do inf) (2n−1)(x2n) = | ||
| (1−x2)2 |
| 2n−1 | ||
S=∑ (od n=2 do ∞) | = | |
| 3n |
| 2n | 1 | |||
=∑ (od n=2 do ∞) | −∑ (od n=2 do ∞)( | )n= | ||
| 3n | 3 |
| 1 | 1 | |||
=2∑ (od n=2 do ∞)(n*( | )n)−∑ (od n=2 do ∞)( | )n | ||
| 3 | 3 |
| 1 | ||
∑(n=0 do∞)xn= | dla |x|<1 | |
| 1−x |
| 1 | ||
(∑(n=0 do∞)xn)'=( | )'⇔ | |
| 1−x |
| 1 | ||
∑(n=1 do ∞)(n*xn−1)= | /*x | |
| (1−x)2 |
| x | ||
∑(n=1 do ∞)(n*xn)= | ||
| (1−x)2 |
| 1 | 1 | 1 | 1 | |||||
S==2([ ∑ (od n=1 do ∞)(n*( | )n]− | )−( [ ∑ (od n=0 do ∞)( | )n]− (1+ | ) )= | ||||
| 3 | 3 | 3 | 3 |
| x | 1 | 1 | 2 | 1 | ||||||
=2( | − | )−( | − | ) gdzie x= | ||||||
| (1−x)2 | 3 | 1−x | 3 | 3 |
| 2 | ||
S= | ||
| 3 |