matematykaszkolna.pl
Zbadaj zbieżność szeregu Jeszcze student: Zbadaj zbieżność szeregu
 π 
∑n=1 do sin(

)
 2n 
 1 2 
Stosuje porównawcze. Widzę, że x∊(0,

), więc stosuje sinx >=

x. Dlaczego ten
 2 π 
szereg jest zbieżny, skoro porównuję z lewej?
 1 
Dlaczego

jest zbieżne, to wiem emotka
 2n−1 
Pozdrawiam?
18 sty 21:50
ICSP: aby zbadać zbieżność musisz oszacować szereg od góry. To, ze oszacujesz od dołu przez szereg zbieżny nic Ci nie daje. Równie dobrze możesz wziąć szereg składający się z samych 0 i zawsze twierdzić, że każdy szereg jest zbieżny. Przeczytaj jeszcze raz dokładnie treść kryterium porównawczego.
18 sty 21:52
Jeszcze student: Rozumiem właśnie o co chodzi, powinienem szacować od góry, z tym, że nie wiem jak. Wszystkie przykłady z sinusem miałem do tej porty rozbieżne i ta własność była do tego idealna. Czy mógłbym Pana prosić o pomoc z tym przykładem?
18 sty 21:54
ICSP: sinx dla małych x ma również oszacowanie od góry. Ten podwójny układ nierówności ma nawet swoją nazwę: https://en.wikipedia.org/wiki/Jordan%27s_inequality
18 sty 21:57
Jeszcze student: Dziękuję bardzo, teraz to wszystko jasne. Eh, co w zbiorze jest to na wykładzie nie zawsze emotka
18 sty 22:00