1 | ||
fn+1 = 4fn + | ||
2n |
1 | ||
g(x) = ∑0 fn xn = f0 + x ∑0 (4fn+1/2n) xn = f0 + x (4g(x) + | ) | |
1−x/2 |
x | ||
g(x) = f0 + 4xg(x) + | ||
1−x/2 |
x | ||
(1−4x)g(x) = f0 + | ||
1−x/2 |
f0 | x | |||
g(x) = | + | |||
1−4x | (1−x/2)(1−4x) |
x | A | B | |||
= | + | ||||
(1−x/2)(1−4x) | 1−x/2 | 1−4x |
f0 | −2/7 | 2/7 | ||||
g(x) = | + | + | = ∑0 (f0*4n+(−2/7)(1/2)n+(2/7)4n)xn | |||
1−4x | 1−x/2 | 1−4x |
1 | ||
fn=4nf0+∑i=1 n 4n−i | ||
2i |
| |||||||||||
fn=4nf0+ | |||||||||||
|
| |||||||||||
fn=4nf0+ | |||||||||||
7 |