1 | ||
= | ∫lntdt | |
2 |
1 | ||
= | ((1+x2)ln(1+x2)−(1+x2) | |
2 |
1 | ||
... = ∫lntdt = tlnt−∫1dt = tlnt − t= | ((x2+1)ln(x2+1)−(x2+1))+C | |
2 |
1 | 1 | ||
∫ ln(t) dt ≠ | [(1+x2)ln(1+x2) − (1+x2)] | ||
2 | 2 |
1 | 1 | ||
∫ ln(t) dt = | [(1+x2)ln(1+x2) − (1+x2)] + C = | ||
2 | 2 |
1 | ||
= | [(1+x2)ln(1+x2) −x2] + C1 = | |
2 |
1 | ||
Bo: C − | = C1 | |
2 |