| x*ln(1−x) |
| ||||||||||||
limx→0 | =limx→0 | = | |||||||||||
| sin2(2x) | 2sin(2x)cos(2x)*2 |
| |||||||||||
=limx→0 | = | ||||||||||
| 4cos(2x)sin(2x) |
| ||||||||||||||
=limx→0 | = | |||||||||||||
| 8(cos2(2x)−sin2(2x)) |
| 1 | |||||||||||||||
=limx→0 | → granica równa − | |||||||||||||||
| 8(cos2(2x)−sin2(2x)) | 4 |
, co innego proponujesz?
(tak jak Szkolniak)
| xln(1−x) | 0 | |||
limx−>0 | = | |||
| sin2(2x) | 0 |
| dxln(1−x) | (1−x)ln(1−x)−x | ||
= | |||
| dx | 1−x |
| dsin2(2x) | |
=4sin(2x)cos(2x) | |
| dx |
| xln(1−x) | (1−x)ln(1−x)−x | 0 | ||||
limx−>0 | =limx−>0 | = | ||||
| sin2(2x) | (1−x)4sin(2x)cos(2x) | 0 |
| d((1−x)ln(1−x)−x) | |
=−ln(1−x)−2 | |
| dx |
| d(1−x)4sin(2x)cos(2x) | |
=8(x−1)sin2(2x)−8(x−1)cos2(2x)−4sin(2x)cos(2x) | |
| dx |
| xln(1−x) | (1−x)ln(1−x)−x | |||
limx−>0 | =limx−>0 | = | ||
| sin2(2x) | (1−x)4sin(2x)cos(2x) |
| −ln(1−x)−2 | ||
=limx−>0 | = | |
| 8(x−1)sin2(2x)−8(x−1)cos2(2x)−4sin(2x)cos(2x) |
| 0−2 | 1 | |||
= | =− | |||
| 8*0+8+0 | 4 |
| xln(1 − x) | −1 | (2x)2 | |||
= | * | * ln(1 − x)−1/x | |||
| sin2(2x) | 4 | sin2(2x) |
| 1 | 1 | |||
→ − | *1 * ln(e) = − | |||
| 4 | 4 |
, jak do tego doszedles?