π | ||
x−> | ||
4 |
2sinxcosx | sinx − cosx | |||
tg(2x)*(tg(x) − 1) = | * | = | ||
(cosx − sinx)(cosx + sinx) | cosx |
2sinx | ||
= − | → −1 gdy x → π/4 | |
cosx + sinx |
1 | ||
= [[1 + tg(x) − 1]1/(tg(x) − 1)]tg(2x)*(tgx − 1) → e−1 = | ||
e |
π | π | |||
niech t= | (nie chce mi sie pisac wszedzie | ![]() | ||
4 | 4 |
lntgx | 0 | |||
limx−>ttg(2x)lntgx=limx−>t | = | |||
ctg(2x) | 0 |
dlntgx | 1 | ||
= | |||
dx | sinxcosx |
dctg(2x) | −2 | ||
= | |||
dx | sin2(2x) |
lntgx | sin2(2x) | |||
limx−>t | =limx−>t | =limx−>t−sin(2x)=−1 | ||
ctg(2x) | −2sinxcosx |
π | 1 | |||
Wiec limx−> | tgxtg(2x)=e−1= | |||
4 | e |
1 | ||
Aby pokazac, ze ta granica finalnie wynosi | ||
e |
lnx | ||||||||
limx−>0+sin(x)ln(x)=limx−>0+ | ||||||||
|
dlnx | 1 | ||
= | |||
dx | x |
| 2cosx | |||||||||||
= | ||||||||||||
dx | cos(2x)−1 |
lnx | cos(2x)−1 | sin2x | ||||||||||
limx−>0+ | =limx−>0+ | =limx−>0+− | = | |||||||||
| 2xcosx | xcosx |
sinx | 1 | |||
=limx−>0+− | sinx | =−1*0*1=0 | ||
x | cosx |
0 | |
0 |
0 | ||
Nie, nie | ||
0 |
−inf | |
inf |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |