Rozwiaz rownanie
5logx−3logx−1= 3logx+1−5logx−1
D=(0,∞)
| 1 | 1 | |||
5logx− | *33logx=3*3logx− | *5logx | ||
| 3 | 5 |
| 1 | 1 | |||
5logx+ | *5logx=3*3logx+ | *3logx | ||
| 5 | 3 |
| 1 | 1 | |||
5logx(1+ | )= 3logx(3+ | |||
| 5 | 3 |
| 6 | 10 | |||
5logx* | = 3logx* | |||
| 5 | 3 |
| 5 | 25 | 5 | ||||
Teraz jest tak ( | )logx= | = ( | )2 ( wiec podzielono obie strony rownania | |||
| 3 | 9 | 3 |
| 6 | 10 | 3 | ||||
5logx* | =3logx* | / * | ||||
| 5 | 3 | 10 |
| 9 | ||
5logx* | =3logx / :5logx | |
| 25 |
| 9 | 3logx | ||
= | |||
| 25 | 5logx |
| 3 | 3 | |||
( | )2=( | )logx | ||
| 5 | 5 |