| 2x+1 | ||
∫ | dx | |
| √4−2x+x2 |
| 2x+1 | dx | |||
∫ | =A√x2−2x+4+K∫ | |||
| √x2−2x+4 | √x2−2x+4 |
| 2x+1 | A(2x−2) | K | |||
= | + | ||||
| √x2−2x+4 | √x2−2x+4 | √x2−2x+4 |
| 3dx | dx | dx | ||||
∫ | dx=3∫ | dx=3∫ | dx=3ln|x−1+√(x+1)2+3|+C | |||
| √x2−2x+4 | √x2−2x+4 | √(x−1)2+3 |
| 2x+1 | ||
∫ | dx=2√x2−2x+4+3ln|x−1+√(x+1)2+3|+C | |
| √x2−2x+4 |
| 2x + 1 | 2x − 2 | 1 | ||||
∫ | dx = ∫ | dx + 3∫ | dx | |||
| √4 − 2x + x2 | √4 − 2x + x2 | √4 − 2x + x2 |
| 1 | 1 | |||
∫ | dx = ∫ | dx = | ||
| √x2 − 2x + 4 | √(x−1)2 + 3 |
| ch(t) | x−1 | |||
= √3∫ | dt = √3∫dt = √3t +C = √3 arsinh( | ) + C = | ||
| ch(t) | √3 |
| x − 1 | ||
= √3 ln( | + √ (x−1)2/3 + 1) + C = | |
| √3 |
| A(2x−2) | A(2x−2) | |||
druga linijka obliczen | − powinno byc | |||
| √x2−2x+4 | 2√x2−2x+4 |