pls pomocy :(
Kaszana: Udowodnij, że jeżeli trójmian kwadratowy f(x) = ax
2 + bx + c spełnia warunek
| a−b−c | |
f( |
| ) = 0, to f(−1) ⋅ f(1) = 0 |
| 2a | |
29 gru 14:24
chichi:
a≠0
| a−b−c | | a−b−c | |
a*( |
| )2+b*( |
| )+c=0 |
| 2 | | 2 | |
a2+b2+c2−2ab−2ac+2bc | | ab−b2−bc | |
| + |
| +c=0 |
4a | | 2a | |
a2+b2+c2−2ab−2ac+2bc+2ab−2b2−2bc+4ac | |
| =0 |
4a | |
(a+c)
2=b
2
|a+c|=b ⇒ c=b−a ∨ c=−b−a
(1) dla c=b−a
f(1)*f(−1)=(a+b+b−a)*(a−b+b−a)=2b*0=0
(2) dla c=−b−a
f(1)*f(−1)=(a+b−b−a)*(a−b−b−a)=0*(−2b)=0
Q.E.D.
29 gru 14:48
Kaszana: Dziękuję <3333
29 gru 14:49
getin:
f(−1) = a−b+c
f(1) = a+b+c
| a−b−c | | (a−b−c)2 | | a−b−c | |
f( |
| ) = a* |
| + b* |
| + c = |
| 2a | | 4a2 | | 2a | |
| a2+b2+c2−2ab−2ac+2bc | | 2ab−2b2−2bc | | 4ac | |
= |
| + |
| + |
| = |
| 4a | | 4a | | 4a | |
| a2+c2−b2+2ac | | (a+c)2−b2 | | (a+c−b)(a+c+b) | |
= |
| = |
| = |
| = |
| 4a | | 4a | | 4a | |
| (a−b+c)(a+b+c) | | f(−1) * f(1) | |
= |
| = |
| = 0 → f(−1) * f(1) = 0 |
| 4a | | 4a | |
29 gru 14:50
Adamm:
Porównując z pierwiastkami f(x), mamy
(a−c)2 = b2−4ac
(a+c)2 = b2
a−b+c = 0 lub a+b+c = 0
f(−1)=0 lub f(1)=0
29 gru 14:52