1 | 1 | |||
∫t2etdt= | (t2et−∫2tetdt) = | t2et−∫tetdt = | ||
2 | 2 |
1 | 1 | 1 | ||||
t2et−(tet−∫etdt)= | t2et−tet+et=et( | t2−t+1)= | ||||
2 | 2 | 2 |
1 | ||
=ex2( | x4−x2+1) | |
2 |
dt | ||
dx= | ||
2x |
1 | 1 | 1 | ||||
∫xtetdx=∫tet= | (tet−∫et)= | (tet−et)= | (x2ex2−ex2) | |||
2 | 2 | 2 |
dt | ||
dx= | ||
2x |
1 | 1 | 1 | |||
∫et= | et= | ex2 | |||
2 | 2 | 2 |
1 | 1 | 1 | ||||
ex2( | x4−x2+1)+x2ex2−ex2+ | ex2+C= | ex2(x4+1)+C | |||
2 | 2 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |