an2+5n+2) | ||
lim n→∞ ( | )7n+2=e2 | |
an2+3n+5 |
2n−3 | ||
= limn−>inf(1+ | )7n+2= | |
an2+3n+5 |
2n−3 | (7n+2)(an2+3n+5) | |||
=limn−>inf(1+ | )k =..., gdzie k = | |||
an2+3n+5 | (an2+3n+5) |
(7n+2)(2n−3) | ||
limn−>infk(2n−3) = limn−>inf | ||
(an2+3n+5) |
14 | |
=2 | |
a |
(7n+2)(2n−3)(an2+3n+5) | ||
Mam pytanie, dlaczego nie powinno być limn→∞ | ||
(an2+3n+5) |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |