1−x | ||
Wyznacz punkty przegięcia y=√ | , D:x∊(−1;1> | |
1+x |
1−x | ||
f'(x)= −1/{√ | *(1+x)2 | |
1+x |
1 | ||
−(√1−x1+x(1+x)2)' = −( | (1+x2)+(2+2x)√1−x1+x) = 2 − 2 | |
√1−x1+x(1+x)2 |
1 | ||
1−2x=0 x= | ||
2 |
1−2x | 1−x | |||
f''(x)= | √ | |||
(1−x2)2 | 1+x |
1−x | ||
y=√ | ||
1+x |
1−x | 1−x | ||||||||||||
y'= | = | ||||||||||||
| (x+1)3/2*(1−x)1/2 |
| |||||||||||
y''= | = | ||||||||||
(x+1)3(1−x) |
| |||||||||||
= | = | ||||||||||
(x+1)3(1−x) |
| |||||||||||
= | = | ||||||||||
(x+1)3 |
6√x+1*√1−x*(1−x)2−(x+1)*√1−x | ||
= | = | |
2(x+1)3(1−x)2 |
6√x+1*√1−x*(1−x)2−(x+1)*√1−x | ||
= | ||
2(x+1)3(1−x)2 |
√1−x[6*√x+1*(1−x)2−(x+1)] | ||
= | ||
2(x+1)3(1−x)2 |
−1 | ||
f'(x) = | ||
√1−x1+x(1+x)2 |
g'(x)h(x)−h'(x)g(x) | ||
f''(x) = | ||
h(x)h(x) |
−h'(x)g(x) | h'(x) | |||
g'(x) = 0 wiec interesuje nas tylko czlon | = | ⇒ h'(x) = | ||
h(x)h(x) | h2(x) |
−1 | ||
= | (1+x)2 + √1−x1+x(2x+2) = | |
√1−x1+x(1+x)2 |
−1 | ||
= | + √1−x1+x(2x+2) | |
√1−x1+x |
1−3 | 1 | |||
x1= | = | ∊ D | ||
−4 | 2 |
1+3 | ||
x2= | =−1 ∊/ D | |
−4 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |