Wyznacznik macierzy
jfranek: Oblicz wyznacznik detA gdy
−50 −30 20 60
−50 −30 30 80
A= −90 −50 20 80
−140 −90 −10 60
21 gru 11:53
Filip:
w1 − w2 = 0 0 −10 −20
detA = a11A11 + a12A12 + a13A13 + a14A14 = a13A13 + a14A14 =
= −10(−1)1 + 3M13 − 20(−1)1 + 4M14 = −10M13 + 20M14
M13
−50 −30 80
−90 −50 80
−140 −90 60
w1 − w2 = 40 20 0
det = a11A11 + a12A12+a13A13 = a11A11 + a12A12 =
= a11(−1)1+1M11 + a12(−1)1+2M12 =
= 40 * (−50 * 60 − (−90) * 80) + 20 * (−90 * 60 − 80 * (−140)) = 168000 − 116000 = 52000
M14
−50 −30 30
−90 −50 20
−140 −90 −10
w2 − w3 => w2 = 50 40 30
w1 + w2 => w1 = 0 10 60
0 10 60
50 40 30
−140 −90 −10
det = a11A11 + a12A12+a13A13 = a12A12 + a13A13 =
= a12(−1)1+2M12 + a13(−1)1+3M13 = −10M12 + 60M13 =
= −10 * (50 * (−10) − 30 * (−140)) + 60(50 * (−90) − 40 *(−140)) = 29000
detA = −10M13 + 20M14 = −10 * 52000 + 20 * 29000 = 60000
21 gru 12:28
Filip:
Moze ktos znajdzie szybszy sposob, niz zmudne obliczenia ...
21 gru 12:30
21 gru 12:39
jfranek: Dzięki bardzo! Rzeczywiście żmudne obliczenia
21 gru 12:57
Mila:
−50 −30 20 60 /:10
−50 −30 30 80 /:10
−90 −50 20 80 /:10
140 −90 −10 60 /:10
============== w2−w1
−5 −3 2 6
0 0 1 2
−9 −5 2 8
14 −9 −1 6
============ w3−w1, w4−2w1
−5 −3 2 6
0 0 1 2
−4 −2 0 2
19 −6 −3 0
============
det (A)=10000*[ 1*(−1)2+3det(B)+2*(−1)2+4*det C]
B:
−5 −3 6 ||−5 −3
−4 −2 2 ||−4 −2
19 −6 0 ||19 −6
=============
det(B)=(−5)*(−2)*0+(−3)*2*19+6*(−4)*(−6)−( (−3)*(−4)*0+(−5)*2*(−6)+6*(−2)*19) )=198
C:
−5 −3 2
−4 −2 0
19 −6 −3
=============
det(C)=2*130=260
det (A)=10000*[(−1)*198+1*260]=620000
21 gru 17:17
jfranek: Dzięki mila
22 gru 00:03
Mila:
22 gru 15:57