x2 | 1 | 1 | ||||
Witam, potrzebuje ekstrema funkcji: y= | *arctan(x+1)− | x+ | ln(x2+2x+2) | |||
2 | 2 | 2 |
−x2 | ||
Pochodna wyszła mi xarctan(x+1)+ | =0 | |
x2+2x+2 |
x2 | 1 | 1 | 1 | 2x+2 | ||||||
y'=x*arctg(x+1)+ | * | − | + | ( | ) | |||||
2 | (x+1)2+1 | 2 | 2 | x2+2x+2 |
1 | ||
y= | *(x2arctg(x+1)−x+ln(x2+2x+2) ) | |
2 |
1 | 1 | 2x+2 | ||||
y'= | *(2x*arctg(x+1)+x2* | −1+ | ) | |||
2 | (x+1)2+1 | x2+2x+2 |
1 | x2 | 2x+2 | ||||
y'= | *(2xarctg(x+1)+ | −1+ | )= | |||
2 | x2+2x+2 | x2+2x+2 |
1 | x2−x2−2x−2+2x+2 | |||
= | *(2xarctg(x+1)+ | )⇔ | ||
2 | x2+2x+2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |