1 | 1 | 1 | k | ||||
+ | +...+ | = | |||||
1*3 | 3*5 | (2k−1)(2k+1) | 2k+1 |
1 | ||
L = ∑k=1n | ||
(2k−1)(2k+1) |
k | ||
P = | ||
2k+1 |
1 | 1 | 1 | 1 | |||||
∑11 | = | ⇔ | = | ⇔ L = P | ||||
(2−1)(2+1) | 2+1 | 3 | 3 |
1 | 1 | (k−1)(2k+1)+1 | ||||
∑k=1k−1 | + | = | = | |||
(2k−1)(2k+1) | (2k−1)(2k+1) | (2k−1)(2k+1) |
2k2−k | k | |||
= | = | ⇔ L = P | ||
(2k−1)(2k+1) | 2k+1 |
1 | 1 | 1 | 1 | |||||
Można też być sprytnym i zauważyć, że | = | *[ | − | ] | ||||
(2k−1)*(2k+1) | 2 | 2k+1 | 2k−1 |
1 | 1 | 1 | 1 | ||||
= | [ | − | ] | ||||
(2k−1)(2k+1) | 2 | 2k−1 | 2k+1 |
1 | 1 | |||
czy [ | − | ] to jest czesc calkowita ? | ||
2k−1 | 2k+1 |
1 | 1 | 1 | 1 | ||||
+ | +...+ | + | = | ||||
1*3 | 3*5 | (2k−3)(2k−1) | (2k−1)(2k+1) |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
= | ( | − | + | − | +...+ | − | + | − | ) | |||||||||
2 | 1 | 3 | 3 | 5 | 2k−3 | 2k−1 | 2k−1 | 2k+1 |
1 | 1 | 1 | 2k+1−1 | k | ||||||
= | (1− | ) = | * | = | ||||||
2 | 2k+1 | 2 | 2k+1 | 2k+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |