| 2 | ||
jak to zrobić? ∫√ | dx. Jakaś wskazówka ![]() | |
| 1−x |
| 1 | ||
t = √1 − x , dt = − | dx | |
| 2√1 − x |
| √2 | 1 | |||
...= − | ∫ | dt | ||
| 2 | t |
| 2 | ||
ja to robię tak t=1−x dt = −dx − ∫√ | =−√2*2√1−x | |
| t |
| 1 | ||
Drobna korekta ... = −2√2∫ | dt | |
| t |
| √2 | 1 | |||
∫ | dx=√2∫ | dx | ||
| √1−x | √1−x |
| 1 | ||
∫ | dx | |
| √1−x |
| du | |
=−1 ⇒ dx=−du | |
| dx |
| 1 | ||
−∫ | du=−∫(√u)−1=2√u + c | |
| √u |
| √2 | 1 | |||
∫ | dx=√2∫ | dx=−2√2√1−x + c | ||
| √1−x | √1−x |