(2n)! | ||
Witam n=1 →∞ ∑ | , Robiąc to D, Alembertem wychodzi mi lim n→∞=2 | |
n2n2n |
((2n+2)! | n2n2n | |||
limn−>inf | * | = | ||
(n+1)2n+22n+1 | (2n)! |
(2n+1)(2n+2)n2n | ||
=limn−>inf | = | |
2(n+1)2n+2 |
(2n+1)(2n+2) | n | 1 | 2 | |||||
limn−>inf | *limn−>inf( | )2n=2* | = | < 1 | ||||
2(n+1)2 | n+1 | e2 | e2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |