n2(n + 1)2 | ||
13 + 23 + ... + n3 = (1 + 2 + ... + n)2 = | ||
4 |
n2(n + 1)2 | ||
13 + 23 + ... + n3 = | już zrobiłem, mam problem z (1 + 2 + ... + n)2 = | |
4 |
n2(n + 1)2 | ||
4 |
n2(n + 1)2 | ||
∑i=0n i3 = | ||
4 |
02(0 + 1)2 | ||
∑i=000 = | ⇔ 0 = 0 ⇔ L = P | |
4 |
(n − 1)2n2 + 4n3 | n4 + 2n3 + n2 | |||
∑i=0ni3 = ∑i=0n−1i3 + n3 = | = | = | ||
4 | 4 |
n2(n + 1)2 | ||
= | ⇔ L = P | |
4 |
n*(n +1) | ||
1 +2 + 3 + ... + n = | ||
2 |
n2*(n +1)2 | ||
( 1 +2 + 3 + ... + n)2 = | ||
4 |
n(n+1) | ||
(∑i=0ni)2=( | )2 | |
2 |
0(0+1) | ||
(∑i=000)2=( | )2 ⇔ 02 = 02 ⇔ L = P | |
2 |
(n−1)n + 2n | n(n+1) | |||
(∑i=0n−1i + n)2 = ( | )2 = ( | )2 ⇔ L = P prawda | ||
2 | 2 |