1 | ||
an=an−1+ | ||
9n(n+1) |
1 | ||
∑n=1∞anxn=∑n=1∞an−1xn+∑n=1∞ | ||
9n(n+1) |
1 | ||
∑n=0∞anxn−0=x(∑n=1∞an−1xn−1)+∑n=0∞ | ||
9(n+1)(n+2) |
1 | ||
∑n=0∞anxn−0=x(∑n=0∞anxn)+∑n=0∞ | ||
9(n+1)(n+2) |
1 | 1 | |||
(1−x)(∑n=0∞anxn)= | (∑n=0∞ | ) | ||
9 | (n+1)(n+2) |
1 | 1 | |||
(1−x)A(x)= | (∑n=0∞ | ) | ||
9 | (n+1)(n+2) |
1 | ||
∑n=0 | ||
(n+1)(n+2) |
1 | ||
∑n=0∞xn= | ||
1−x |
xn+1 | 1 | |||
∑n=0∞ | =ln( | ) | ||
n+1 | 1−x |
xn+2 | ||
∑n=0∞ | = | |
(n+1)(n+2) |
1 | ||
∫ln{ | }dx | |
1−x |
1 | ||
t= | ||
1−x |
1 | ||
1−x= | ||
t |
1 | ||
1− | =x | |
t |
1 | ||
dx= | dt | |
t2 |
ln(t) | ln(t) | 1 | ||||
∫ | dt=− | +∫ | dt | |||
t2 | t | t2 |
ln(t) | ln(t) | 1 | ||||
∫ | dt=− | − | +C | |||
t2 | t | t |
1 | 1 | |||
∫ln{ | }dx=(x−1)ln( | )+(x−1)+C | ||
1−x | 1−x |
xn+2 | 1 | |||
∑n=0∞ | =(x−1)ln( | )+x | ||
(n+1)(n+2) | 1−x |
xn | x−1 | 1 | x | |||||
∑n=0∞ | = | ln( | )+ | |||||
(n+1)(n+2) | x2 | 1−x | x2 |
1 | x−1 | 1 | 1 | |||||
(1−x)A(x)= | ( | ln( | )+ | ) | ||||
9 | x2 | 1−x | x |
1 | 1 | 1 | 1 | 1 | ||||
A(x)=− | ln( | )+ | ||||||
9 | x2 | 1−x | 9 | x(1−x) |
1 | 1 | 1 | 1 | 1 | ||||
A(x)= | ln( | )+ | ||||||
9 | x | 1−x | 9 | (1−x) |
1 | 1 | 1 | 1 | |||
A(x)= | ln(1−x)+ | |||||
9 | x | 9 | (1−x) |
1 | −xn | 1 | ||||
A(x)= | (∑n=0∞ | )+ | (∑n=0∞xn) | |||
9 | n+1 | 9 |
1 | 1 | 1 | |||
A(x)=∑n=0∞[(− | )+ | ]xn | |||
9 | n+1 | 9 |
1 | 1 | 1 | ||||
an= | − | * | ||||
9 | 9 | n+1 |
1 | 1 | 1 | 1 | |||||
an= | ( | + | +...+ | )= | ||||
9 | 1*2 | 2*3 | n*(n+1) |
1 | 12− | 3−2 | (n+1)−1 | ||||
( | + | +...+ | )= | ||||
9 | 1*2 | 2*3 | n*(n+1) |
1 | 1 | 1 | n | |||||
= | ( | − | )= | |||||
9 | 1 | n+1 | 9(n+1) |
1 | 1 | 1 | 1 | |||||
an= | ( | + | +...+ | )= | ||||
9 | 1*2 | 2*3 | n*(n+1) |
1 | 1−2 | 3−2 | (n+1)−1 | ||||
( | + | +...+ | )= | ||||
9 | 1*2 | 2*3 | n*(n+1) |
1 | 1 | 1 | n | |||||
= | ( | − | )= | |||||
9 | 1 | n+1 | 9(n+1) |
1 | ||
Błąd był w tym że po tym jak w szeregu ∑n=1∞ | xn | |
9n(n+1) |
1 | ||
(Szereg po przesunięciu indeksu powinien wyglądać tak ∑n=0∞ | xn+1) | |
9(n+1)(n+2) |
1 | ||
Następnie błędnie założyłem że szereg wygląda tak ∑n=0∞ | xn | |
9(n+1)(n+2) |