taylor
salamandra: Wyznacz cztery pierwsze wyrazy szeregu Taylora dla f(x)=sinx
x0= π
f'(x)=cosx f'(x0)=1
f''(x)=−sinx. f''(x0)=0
f'''(x)=−cosx f'''(x0)=−1
f
IV(x)=sinx f
IV(0)=0
| 1 | | 0 | | −1 | | 0 | |
f(x)=0+ |
| (x−π)+ |
| *(x−π)2+ |
| *(x−π)3+ |
| *(x−π)4 = |
| 1! | | 2! | | 3! | | 4! | |
| −1 | |
x−π+ |
| (x3−3πx2+3π2x−π3)= |
| 6 | |
| 1 | | 1 | | 1 | | π3 | |
= x−π− |
| x3+ |
| πx2− |
| π2x+ |
| |
| 6 | | 2 | | 2 | | 6 | |
Czy to jest dobrze?
6 gru 23:08
ABC:
a ile to jest cos π?
6 gru 23:10
salamandra: −1 oczywiście*
6 gru 23:35