cos(x) | e{x} | |||
lim x→0+ ( | − | =−1 | ||
x | sin(x) |
x ex − cos x sin x | ||
= − | ||
x sin x |
cos(x) | ex | ||
− | |||
x | sin(x) |
cos(x)sin(x)−xex | ||
= | ||
xsin(x) |
sin(2x)−2xex | ||
= | ||
2xsin(x) |
sin(2x)−2xex | x | ||
= | |||
2x2 | sin(x) |
sin(2x)−2xex | x | ||
limx→0+ | = | ||
2x2 | sin(x) |
sin(2x)−2xex | x | |||
limx→0+ | limx→0+ | = | ||
2x2 | sin(x) |
sin(2x)−2xex | ||
limx→0+ | ||
2x2 |
(sin(2(x+h))−2(x+h)ex+h)−(sin(2x)−2xex) | ||
limh→0 | ||
h |
2(x+h)2−2x2 | ||
limh→0 | ||
h |
(sin(2(x+h))−2(x+h)ex+h)−(sin(2x)−2xex) | ||
limh→0 | ||
h |
sin(2x)cos(2h)+cos(2x)sin(2h)−2xexeh−2hexeh−sin(2x)+2xex | ||
limh→0 | ||
h |
sin(2x)(cos(2h)−1) | 2cos(2x)sin(2h) | |||
limh→0 | +limh→0 | |||
h | 2h |
2xex(eh−1) | ||
−limh→0 | −limh→02exeh | |
h |
2(x+h)2−2x2 | ||
limh→0 | ||
h |
2(x+h−x)(x+h+x) | ||
limh→0 | ||
h |
2h(2x+h) | ||
limh→0 | ||
h |
cos(2x)−(x+1)ex | ||
limx→0 | ||
2x |
(cos(2(x+h))−(x+h+1)ex+h)−(cos(2x)−(x+1)ex) | ||
limh→0 | ||
h |
cos(2x)cos(2h)−sin(2x)sin(2h)−(x+1)exeh−hexeh−cos(2x)+(x+1)ex | ||
limh→0 | ||
h |
cos(2x)(cos(2h)−1) | 2sin(2x)sin(2h) | |||
limh→0 | −limh→0 | |||
h | 2h |
(x+1)ex(eh−1) | hexeh | |||
−limh→0 | −limh→0 | |||
h | h |
cos(2x)(cos(2h)−1) | 2sin(2x)sin(2h) | |||
limh→0 | −limh→0 | |||
h | 2h |
(x+1)ex(eh−1) | ||
−limh→0 | −limh→0exeh | |
h |
2(x+h)−2x | ||
limh→0 | = | |
h |
2h | ||
limh→0 | ||
h |
−2sin(2x)−(x+2)ex | ||
limx→0+ | ||
2 |
−2*0−(0+2) | ||
= | ||
2 |
−2 | ||
= | ||
2 |