1)
| x(1−cosx) | ||
limx→0 | ||
| sin3x |
| xsinx | ||
limx→0 | ||
| cosx −1 |
| lim | x(1−cosx) | ||
| x→0 | (1−cosx)(1+cosx)(sinx) |
| lim | x | ||
| x→0 | (1+cosx)(sinx) |
| lim | 1 | 1 | |||
= | |||||
| x→0 | 1+cosx | 2 |
| x | |
? | |
| sinx |
| x(1−cosx)(1+cosx) | x | |||
limx−>0 | = limx−>0 | = | ||
| sin3x(1+cosx) | sinx(1+cosx) |
| sinx | 1 | 1 | 1 | |||||
= limx−>0( | )−1 * limx−>0 | = 1−1* | = | |||||
| x | 1+cosx | 2 | 2 |
| xsinx | (xsinx)(cosx+1) | xsinx(cosx+1) | ||||
= | = | = | ||||
| cosx−1 | (cosx−1)(cosx+1) | sin2x |
| x(cosx+1) | sinx | 1 | 1 | |||||
= ( | )−1 * ( | )−1 = | * 2 =1 | |||||
| sinx | x | cosx+1 | 2 |
| xsinx | xsinx(cosx+1) | x(cosx+1) | |||
= | = − | → −1*2 = −2 | |||
| cosx − 1 | −sin2x | sinx |