n−4 | ||
lim n−>∞( | )2n+1 | |
2n−4 |
n | ||
(1 − | )2n+1 | |
2n−4 |
(2n−4)(2n+1)n | ||
2n+1 = | ||
(2n−4)n |
n−4 | ||
limn−>inf( | )(2n−4)/n = e | |
2n−4 |
2n2 + n | ||
limn−>inf | = inf | |
2n + 4 |
n−4 | 1 | |||
lim−>inf( | )2n+1 = | = 0 | ||
2n−4 | einf |
n−4 | 1 | |||
limn−>inf( | )(2n−4)/n = | |||
2n−4 | e |
lim | n−4 | ||
( | )2 − 4/n = 0 | ||
n → ∞ | 2n−4 |
lim | n−4 | 1 | |||
( | )2 − 4/n = | ||||
n→∞ | 2n−4 | 4 |
1 | n −4 | |||
.... = limn→∞( | )2n + 1*( | )2n + 1 = 0*ejakaś liczba = 0 | ||
2 | n − 2 |
n−4 | |
<1/2 | |
2n−4 |
n−4 | ||
Dlatego ( | )2n+1→0. | |
2n−4 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |