√1+4x | ||
∫ | dx | |
x |
t | |
dt=dx | |
2 |
t2−1 | ||
x= | ||
4 |
4 | t | |||
∫t( | ) | dt= | ||
t2−1 | 2 |
2t2 | ||
∫ | dt= | |
t2−1 |
2t2−2+2 | ||
∫ | dt= | |
(t2−1) |
2 | ||
∫2dt+∫ | dt= | |
t2−1 |
(t+1)−(t−1) | ||
∫2dt+∫ | dt= | |
(t−1)(t+1) |
1 | 1 | |||
=∫2dt+∫ | dt−∫ | dt | ||
t−1 | t+1 |
t−1 | ||
=2t+ln| | |+C | |
t+1 |
√1+4x−1 | ||
=2√1+4x+ln| | |+C | |
√1+4x+1 |
1 | ||
Jak napisał Mariusz. t = x2 + 2x + 2 , dt = 2(x + 1)dx , | dt = (x + 1)dx | |
2 |
1 | ||
i masz: | ∫sintdt | |
2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |