4n + 3 | ||
Oblicz granicę ciągu limn −> ∞ ( | )2n | |
2n − 1 |
k | ||
(1+ | )n/k = e | |
n |
4n + 3 | 2n + 4 | 5 | ||||
( | )2n = (1 + | )2n = (2 + | )2n | |||
2n − 1 | 2n − 1 | 2n − 1 |
2n + 4 | ||
Mhm, ja bym sie zatrzymal na (1 + | )2n i przeszedl do wykladnika potęgi | |
2n − 1 |
2n − 1 | 2n(2n + 4) | ||
* | |||
2n + 4 | 2n − 1 |
2n(2n + 4) | ||
Zalozmy, ze x = | ||
2n − 1 |
4n+3 | 2n−1+2n+4 | 2n+4 | 1 | ||||||||||
= | =1+ | =1+ | |||||||||||
2n−1 | 2n−1 | 2n−1 |
|
1 | 4n2−2n | |||||||||
((1+ | )[2n+4]/[2n−1])(4n2−2n)/(2n+4), a granica z | |||||||||
| 2n+4 |
1 | ||
e = limn→∞(1+ | )n | |
n |
2n+4 | ||
a u ciebie | ||
2n−1 |
4n+3 | 4n+3 | ||
=2 | |||
2n−1 | 4n−2 |
4n+3 | ||
limn→∞22nlimn→∞( | )2n | |
4n−2 |
4n−2+5 | ||
limn→∞22nlimn→∞( | )2n | |
4n−2 |
5 | ||
limn→∞22nlimn→∞(1+ | )2n | |
4n−2 |
1 | ||||||||
limn→∞22nlimn→∞(1+ | )(4n−2)/5*5n/(2n−1) | |||||||
|
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |