(x+1) | ||
x−> +∞ ( | )2x | |
(x−2) |
3 | ||
(x+1)/(x−2)=1+ | ||
x−2 |
3 | 2x | |||
= lim[ (1 + | )x − 2] | = (e3)2 = e6 | ||
x − 2 | x − 2 |
x+1 | x−2+3 | x−2 | 3 | 3 | |||||
= | = | + | = 1+ | ||||||
x−2 | x−2 | x−2 | x−2 | x−2 |
x +1 |
| ||||||||||||
f(x) = ( | )2x = [ | ]2 | |||||||||||
x − 2 |
|
e | ||
lim f(x) = [ | ]2 = e6 | |
e−2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |