| |BD| | |CE| | |AF| | ||||
sposób, że | = | = | =k, k>0. Oblicz pole trójkąta DEF | |||
| |DC| | |EA| | |FB| |
PDEF=S−(Pa+Pb+Pc}
| |AF| | ||
1) | =k | |
| |FB| |
| |AF| | k*|FB| | k | |||
= | = | ⇔ | |||
| |AB| | k*|FB|+|FB| | k+1 |
| k | ||
|AF|= | *|AB| | |
| k+1 |
| CE| | |
=k | |
| |AE| |
| |AE| | |AE| | 1 | |||
= | = | ⇔ | |||
| |AC| | |AE|+k*|AE| | k+1 |
| 1 | ||
|AE|= | *|AC| | |
| k+1 |
| CE | |k*|AE| | k | |||
= | = | ||||
| |AC| | |AE|+k*|AE| | k+1 |
| k | ||
|CE|= | *|AC| | |
| k+1 |
| |BD| | |
=k | |
| |DC| |
| |BD| | k*|CD| | k | |||
= | = | ||||
| |BC| | k*|CD|+|CD| | k+1 |
| k | ||
|BD|= | *|BC| | |
| k+1 |
| 1 | ||
|CD|= | *|BC| | |
| k+1 |
| 1 | ||
Pa= | |AF|*|AE|*sinα⇔ | |
| 2 |
| 1 | k | 1 | ||||
Pa= | * | *|AB|* | *|AC|*sinα⇔ | |||
| 2 | k+1 | k+1 |
| k | ||
Pa= | *S | |
| (k+1)2 |
| 1 | 1 | 1 | k | |||||
Pb= | *|FB|*|BD|*sinβ= | * | |AB|* | *|BC|*sinβ | ||||
| 2 | 2 | k+1 | k+1 |
| k | ||
Pb= | *S | |
| (k+1)2 |
| 1 | 1 | 1 | k | |||||
Pc= | *|CD|*|CE|= | * | *|BC|* | *|AC|*sinγ | ||||
| 2 | 2 | k+1 | k+1 |
| k | ||
Pc= | *S | |
| (k+1)2 |
| 3k | ||
P=S− | *S | |
| (k+1)2 |
| 3k | ||
P=S*(1− | ) | |
| (k+1)2 |
|AB|=c(k+1) , |AC|=b(k+1) , |BC|=a(k+1)
2S= |AB|*|AC|*sinα=bc(k+1)2*sinα i 2 P1=bck*sinα
2S= |BC|*|AB|*sinβ=ac(k+1)2*sinβ i 2P2=ack*sinβ
2S= |BC|*|AC|*sinγ =ab(k+1)2*sinγ i 2P3=abk*sinγ
to
| P1 | P2 | P3 | k | 3k | ||||||
= | = | = | to P1+P2+P3= | S | ||||||
| S | S | S | k+1)2 | (k+1)2 |
| 3k | ||
P= S(1− | ) | |
| (k+1)2 |