| 1 | ||
∑n=1 | Jakiś pomysł jak to rozbić ? | |
| n(n+1)(n+2) |
| −2n | ||
1/n − 1/n+1 − 1/n+2 = | ||
| n(n+1)(n+2) |
| 1 | ||
(1−1/2−1/3)+(1/2−1/3−1/4)+(1/3−1/4−1/5)+(1/4−1/5−1/6)+...+(1/n−1/n+1−1/n+2) | ||
| −2n |
| 1 | 1 | 1 | 1 | ||||
= | [ | − | ] | ||||
| n(n+1)(n+2) | 2 | n(n+1) | (n+1)(n+2) |
| 1 | ||
Suma = | ||
| 4 |
| 1 | 1 | 1 | 1 | 1 | |||||
= − | ( | − | − | ) | |||||
| n(n+1)(n+2) | 2n | n | n+1 | n+2 |
| 1 | ||
ale zauważ, że masz tutaj | ||
| 2n |
| 1 | 1 | 1 | 1 | 1 | ||||||
c*( | − | − | ) to ten c to NIE BĘDZIE − | tylko − | ||||||
| 1 | 2 | 3 | 2n | 2*1 |
| 1 | 1 | 1 | 1 | |||||
c*( | − | − | ) będzie c = − | |||||
| 100 | 101 | 102 | 2*100 |
| 1 | ||
I tutaj masz ten błąd Bo Ty wszędzie przyjmujesz c = − | (bez wstawiania wartości | |
| 2n |
| 1 | 1 | 1 | ||||
∑ (n=1 do∞) ( | )= | +∑ (n=2 do∞) | = | |||
| n*(n+1) | 2 | n*(n+1) |
| 1 | 1 | |||
= | +∑ (n=1 do∞) | = | ||
| 2 | (n+1)*(n+2) |
| 1 | n | |||
= | +∑ (n=1 do∞) | = | ||
| 2 | n*(n+1)*(n+2) |
| 1 | n+2−2 | |||
= | +∑ (n=1 do∞) | = | ||
| 2 | n*(n+1)*(n+2) |
| 1 | 1 | 1 | ||||
= | +∑ (n=1 do∞) ( | )−2*∑ (n=1 do∞) | ⇔ | |||
| 2 | n*(n+1) | n*(n+1)*(n+2) |
| 1 | 1 | ||
−2*∑ (n=1 do∞) | =0 | ||
| 2 | n*(n+1)*(n+2) |
| 1 | 1 | |||
∑ (n=1 do∞) | = | |||
| n*(n+1)*(n+2) | 4 |