1 | ||
∑= | ||
n(n+2) |
1 | 1 | 1 | |||
+ | + | + ... | |||
3 | 3*5 | 5*7 |
1 | 1 | 1 | |||
+ | + | + ... | |||
2*4 | 4*6 | 6*8 |
1 | 1 | 1 | 1 | 1 | 1 | ||||||
[(1− | ) + ( | − | ) + ( | − | )+ .. ] | ||||||
2 | 3 | 3 | 5 | 5 | 7 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
[( | − | ) + ( | − | ) + ( | − | )+ .. ] | |||||||
2 | 2 | 4 | 4 | 6 | 6 | 8 |
1 | 1 | 3 | ||||
= | [1+ | ] = | ||||
2 | 2 | 4 |
1 | |
dajemy przed nawias dlatego ,że to połowa szeregu ? | |
2 |
1 | 2 | |||
1 − | = | |||
3 | 1*3 |
1 | 1 | 2 | |||
− | = | ||||
3 | 5 | 3*5 |
1 | 1 | 2 | 1 | ||||
− | = | <−−− stąd ta | |||||
k | k+2 | k(k+2) | 2 |
1 | A | B | |||
= | + | ||||
n*(n+2) | n | n+2 |
1 | ||
A= | ||
2 |
1 | ||
B=− | ||
2 |
1 | 1 | 1 | 1 | 1 | 1 | ||||||
= | − | = | *( | − | ) | ||||||
n*(n+2) | 2n | n+2 | 2 | n | n+2 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
= | *(1− | + | − | + | + | + | −( | )+ | ||||||||
2 | 3 | 2 | 4 | 3 | 5 | 4 | 6 |
1 | 1 | 1 | ||||
+ | −( | )+... | ] | |||
5 | 7 | n+2 |
1 | 3 | 1 | 1 | |||||
Sn= | *[ | −( | + | ] | ||||
2 | 2 | n+1 | n+2 |
3 | ||
limn→∞Sn= | ||
4 |