x | √3 | √6 | |||||||||
= ctg60o = | −−−> x = a | ||||||||||
| 3 | 6 |
√6 + 3√2 | ||
bok trójkąta = 2x + a√2 = a | −−−> Ptrojkata = .... | |
3 |
a√2 | ||
x√2=a czyli x= | (gdyż jest tam trójkąt równoramienny o bokach, x,x,a) | |
2 |
y√3 | a√2 | |||
x= | czyli y√3/2= | czyli y=a√6/3 | ||
2 | 2 |
7 | ||
P trójkąta=b2√3/4= | a2√3 | |
6 |
PKWADRATU | a2 | 2√3 | |||
= | =6/(√3*7)= | ||||
PTRÓJKĄTA | 7/6a2√3 | 7 |
P⬠ | |
= ........... | |
PΔ |
|PB| | √3 | |PB| | ||||
W ΔPBE: ctg60o= | ⇔ | = | ||||
|h | 3 | h |
√3 | ||
|PB|= | *h | |
3 |
√3 | √3 | |||
a=h+|PB|=h+ | *h=h*(1+ | ) | ||
3 | 3 |
3+√3 | ||
a=h* | ||
3 |
3+√3 | 12+6√3 | |||
PΔABC=a2√3=(h* | )2*√3=h2* | *√3 | ||
3 | 9 |
6*(2+√3)*√3 | 2h2*(2√3+3) | |||
PΔABC=h2* | = | |||
9 | 3 |
P□ | 2h2 | 3 | |||||||||
= | = | ||||||||||
PΔABC |
| 3+2√3 |