3√x−1 | ||
lim | ||
√x−1 |
2√x+10−2√2x+11 | ||
lim | ||
3√x+1 |
1−cos(5x) | ||
lim | ||
x2 |
1−cos(ax) | ||
3) zastosować wzór: lim | = 0 albo 'ze szpitala' jeżeli już był (ale wątpię) | |
ax |
3√x−1 | (3√x−1)*(3√x2+3√x+1) | ||
= | = | ||
√x−1 | (√x−1)(3√x2+3√x+1) |
x−1 | (√x−1)*(√x+1) | |||
= | = | |||
(√x−1)*(3√x2+3√x+1) | (√x−1)*(3√x2+3√x+1) |
√x+1 | 2 | |||
limx→1 | = | |||
(3√x2+3√x+1) | 3 |
(√x+10−√2x+11)*(√x+10+√2x+11) | |
= | |
(3√x+1)*(√x+10+√2x+11) |
x+10−2x−11 | ||
= | = | |
(3√x+1)*(√x+10+√2x+11) |
−(x+1) | ||
= | = | |
(3√x+1)*(√x+10+√2x+11) |
−(3√x+1)*(3√x2−3√x+1) | ||
= | = | |
(3√x+1)*(√x+10+√2x+11) |
−(3√x2−3√x+1) | ||
= | ||
(√x+10+√2x+11) |
−(3√x2−3√x+1) | 1 | |||
limx→−1 | =− | |||
(√x+10+√2x+11) | 2 |