n | ||
an=( | )2n+3 | |
2n+1 |
−n−1 | ||
wychodzi mi po przekształceniu (1+ | )2n+3jak doprowadzić do postaci 1+ 1/an? | |
2n+1 |
n | 2n+1−n−1 | −n−1 | 1 | ||||||||||
= | =1+ | =1+ | |||||||||||
2n+1 | 2n+1 | 2n+1 |
|
1 | 2n+1 | (−n−1)(2n+3) | ||||||||||
[(1+ | ) | ]* | = | |||||||||
| −n−1 | 2n+1 |
n | 1 | 0.5 | ||||
( | ).... = ( | ).... * (1 − | ).... −−−> 0*e−2 = 0 | |||
2n+1 | 2 | n + 0.5 |
n | 1 | |||
0<( | )2n+3 < | →0 | ||
2n+1 | 22n+3 |
n | ||
Wniosek: ( | )2n+3 →0 | |
2n+1 |