zbiory
salamandra: Dane są zbiory: A = {n ∈ N : n jest parzyste}, B =
{1, 2, 3, 4, 5, 6, 7, 8} oraz uniwersum U = N. Wyznacz:
a)A ∪ B
b) A ∩ B
c) A \ B
d) B \ A
e) A (różnica symetryczna) B
f) A (z kreską nad A)
a) {0,1,2,3,4,5,6,7,8,10,12,14,...}
b) {2,4,6,8}
c) {0,10,12,14,...}
d) {1,3,5,7}
e) {0,1,3,5,7,10,12,14,...}
f) {1,3,5,7,9,11,...}
jest dobrze?
18 paź 22:20
wredulus_pospolitus:
Jak masz zdefiniowany zbiór liczb naturalnych? 0 wliczacie czy nie?
(f) chodziło Ci A'
Jeśli tak i tak to
18 paź 22:27
salamandra: Wliczamy 0. Nie wiem czy A' to to samo, co w tym wypadku
mam taką definicję przed zadaniem:
Zbiory mozemy traktowac jako podzbiory pewnego ustalonego zbioru U, czyli uniwersum. Wtedy
dopelnieniem zbioru
A nazywamy zbior A = U \ A.
No i nad tym czerwonym A jest "podłoga"
18 paź 22:30
chichi: Oznacza to domknięcie zbioru A
18 paź 22:36
chichi: 22.30
A' = U \ A
18 paź 22:43
salamandra: dzięki
18 paź 22:44