x2 | y2 | |||
Elipsa: | + | =1 | ||
a2 | b2 |
3 | ||
2a=3 , a= | ||
2 |
3 | ||
12=( | )2−b2 | |
2 |
5 | ||
b2= | ||
4 |
x2 | y2 | ||||||||||||||
+ | =1 | ||||||||||||||
|
|
√5 | ||
y=± | *√9−4x2 | |
6 |
3 | ||
√(x−1)2+y2=2* | −√(x+1)2+y2 | |
2 |
3 | 3 | |||
(x−1)2+y2=4*( | )2−4* | *√(x+1)2+y2+(x+1)2+y2 | ||
2 | 2 |
3 | 3 | |||
x2−2x+1+y2=4*( | )2−4* | *√(x+1)2+y2+x2+2x+1+y2 | ||
2 | 2 |
3 | 3 | |||
4* | *√(x+1)2+y2=4*( | )2+4*1*x (c=1) (2a=3, czyli a=3/2) | ||
2 | 2 |
3 | 3 | ||
*√(x+1)2+y2=( | )2+x | ||
2 | 2 |
3 | 3 | 3 | ||||
( | )2*((x+1)2+y2)=x2+2*( | )2+( | )4 | |||
2 | 2 | 2 |
3 | 3 | 3 | 3 | 3 | 3 | |||||||
( | )2*x2+( | )2*2x+( | )2+( | )2*y2=x2+2*x*( | )2+( | )4 | ||||||
2 | 2 | 2 | 2 | 2 | 2 |
3 | 3 | 3 | 3 | |||||
( | )2*x2+( | )2+( | )2*y2=x2+( | )4 | ||||
2 | 2 | 2 | 2 |
3 | 3 | 3 | 3 | |||||
( | )2−1)*x2+( | )2*y2=( | )4−( | )2 | ||||
2 | 2 | 2 | 2 |
3 | 3 | 3 | 3 | |||||
( | )2−12)*x2+( | )2*y2=( | )2*(( | )2−12) | ||||
2 | 2 | 2 | 2 |
3 | ||
(( | )2−12)=b2 | |
2 |
3 | 3 | 3 | ||||
b2x2+( | )2*y2=b2*( | )2 dzielimy obie strony przez b2*( | )2 | |||
2 | 2 | 2 |
x2 | y2 | |||||||||||||||||
+ | =1 | |||||||||||||||||
|
|
x2 | y2 | ||
+ | =1 | ||
a2 | b2 |
√5 | ||
czyli a=3/2 (długość półosi wielkiej) b= | (?) (długość półosi małej) | |
2 |