√3 | i | |||
D) (1 + | + | )24 | ||
2 | 2 |
√3 | 1 | |||
Znaczy Re to 1 + | ale jak zapisać Im jako | *i ![]() | ||
2 | 2 |
α | α | α | ||||
1 + cosα + isinα = 2cos( | )(cos( | ) + isin( | )) | |||
2 | 2 | 2 |
1 | 2 | |||
tg(Arg(z))= | * | |||
2 | 2+√3 |
1 | ||
tg(Arg(z))= | ||
2+√3 |
π | ||
Arg(z)= | ||
12 |
√3 | 1 | |||
|z|=(1+ | )2+( | )2 | ||
2 | 2 |
3 | 1 | |||
|z|2=1+√3+ | + | |||
4 | 4 |
√3 | 1 | |||
z=1+( | + | i) | ||
2 | 2 |
√3 | 1 | |||
Próbujemy znaleźć argument dla v=( | + | i) | ||
2 | 2 |
√3 | 1 | |||
cosα= | , sinα= | |||
2 | 2 |
π | ||
α∊(0, | ) | |
2 |
π | ||
α= | ||
6 |
π | π | |||
1+cos | =2cos2 | |||
6 | 12 |
π | π | π | ||||
sin | =2sin | *cos | ||||
6 | 12 | 12 |
π | π | π | ||||
z=2cos2 | +i*2sin | *cos | = | |||
12 | 12 | 12 |
π | π | π | ||||
=2cos | *(cos | +i sin | ) | |||
12 | 12 | 12 |
π | 1+√3 | |||
|z|=2cos | = | |||
12 | √2 |
π | π | |||
z24=|z|24*(cos( | *24)+i sin ( | *24) | ||
12 | 12 |
π | π | |||
=|z|24*(cos( | +i sin | )=|z|24*(0+i*1) | ||
2 | 2 |
1+√3 | ||
z24=( | )24=(2+√3)12 | |
√2 |
Im(z) | ||
tg(Arg(z))= | ||
Re(z) |
π | ||
wtedy zależnie od znaku Im(z) za argument liczby zespolonej przyjmujemy ± | ||
2 |
Re(z) | ||
cos(Arg(z))= | ||
|z| |
Im(z) | ||
sin(Arg(z))= | ||
|z| |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |