4 | 1 | |||
limx−>∞ (√x2+4x−√x2−3x = x √1+ | − x √1− | |||
x | x |
√x2+4x−√x2−3x | √x2+4x+√x2−3x | ||
* | = | ||
1 | √x2+4x+√x2−3x |
x2+4x−x2+3x | ||
= | = | |
√x2+4x+√x2−3x |
7x | ||
limx→∞ | = | |
√x2+4x+√x2−3x |
7x | 7 | |||
limx→∞ | = | |||
x*(√1+4/x+√1−3/x) | 2 |
5x4−x3+1 | x4(5 − x3/x4 + 1/x4) | |||
lim→∞ = | = | |||
2x2−5 | x2(2−5/x2) |
5x4 | 5 | |||
=limx→+∞ | = limx→+∞ | x2 = +∞ | ||
2x2 | 2 |