Eta:
|AB|=4a to |AM|=|BN|=2a i |MD|=|NB|=a
√3
punkt K jest symetryczny do punktu N względem prostej FD
to |KD|=|MD|=|NB|=a
√3
|∡MDN|=120
o= 2α+2β , bo α+β=60
o z treści zadania
zatem ΔFND ≡ΔFKD z cechy (bkb) to |FN|=|KF|=b
punkt K ∊EF bo |∡FKD|+|∡EKD|=180
o
więc ΔEMD≡ΔEKD to |ME|=|EK|=c
i mamy tezę:
| 1 | |
|AE|+|BF|=a+c+a+b= c+b+2a = |EF|+ |
| |AB| |
| 2 | |
===================================