matematykaszkolna.pl
trójkąt tomx: W trójkącie ABC kąt przy wierzchołku B ma miarę dwa razy mniejszą od miary kąta przy wierzchołku C Wykaż,ze |AB|2=|AC|(|AC|+|BC|)
23 sie 21:59
Mila: rysunek 1) z tw. o dwusiecznej :
b e 

=

i e+f=c⇔f=c−e
a f 
2) Z podobieństwa trójkątów ΔADC∼ΔABC
b c 

=

⇔b2=c*e
e b 
 b2 
e=

 c 
3) z (1) i (2)
b 
b2 

c 
 

=

a 
 b2 
c−

 c 
 
b b2 1 b 

=


=

a c2−b2 a c2−b2 
c2−b2=ab ⇔c2=ab+b2⇔ |AB|2=⇔|AC|*(|BC|+|AC|) cnw ============
23 sie 22:47
Eta: rysunek To ja "tradycyjnie" emotka z podobieństwa trójkątów ADB i ACD z cechy (kkk)
c b 

=

a+b c 
c2=b(b+a) |AB|2=|AC|(|AC|+|BC|) ================= c.n.w.
23 sie 23:08